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INFINITE TYPE POWER SERIES SUBSPACES 
OF INFINITE TYPE POWER SERIES SPACES* 

BY 

ED DUBINSKY 

ABSTRACT 

We consider the problem of finding all power series subspaces of a given 
infinite type power series space. A necessary condition is obtained which is 
similar to a property of complemented subspaces of nuclear Fr6chet spaces. In 
some cases, a complete solution is obtained and this leads to new information 
on a conjecture of C. Bessaga. 

This paper  is a continuation of the investigations begun in [31. The main 

problem which we consider here is to find, for  a given nuclear exponent  

sequence a of infinite type,  necessary and sufficient conditions on /3 so that 

A~(fl) is isomorphic to a subspace  of A~(a). In view of a well-known result of 

V. P. Zahar juta  [6], this is the same as finding all power  series subspaces  of 

A~(a). Theorem 1 is a technical characterizat ion of such fl which is useful but 

is not completely  sat isfactory.  Theorem 2 gives a necessary condition on/3 to 

the effect that, up to i somorphism, /3  must be obtainable f rom the sequence a 

by deleting some terms and repeating others finitely many times. This is similar 

to a proper ty  of complemented  subspaces  of nuclear Fr6chet spaces (see [1], 

Theorem 2.2). It is shown that the condition of Theorem 2, even when 

strengthened by the additional requirement  (easily established as necessary 

f rom considerat ions of diametric dimension) that supn(c~n/fl,)< ~o, iS not 

sufficient. On the other  hand, it is shown in Theorem 3 that if lira, (~, .~/a, ) = co 

or s u p . ( ~ 2 , [ ~ , ) < o o  then the necessary condition of Theorem 2 can be 

strengthened so as to exclude repetitions and it is then sufficient. This permits 

us to establish the following conjecture of C. Bessaga [1] for the case 

X = A~(c~) and c~ satisfies either of the above  two conditions: i f X  is a nuclear 

Frdchet space with a basis (x.) then Y is isomorphic to a complemented 

subspace of X and has a basis if and only if Y is isomorphic to the subspace 

generated by a subsequence of (x.). Up until now this conjecture  was known to 
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hold for all power series spaces of finite type [4] and those power series spaces 

of infinite type which are isomorphic to their square (that is, sup, (a,.°/a, ) < ~). 
We do not know if Theorem 3 holds for all a. All of our considerations 

involve infinite type power series subspaces of an infinite type power series 

space A~(a). In view of Zaharjuta 's  result, this includes all power series 

subspaces of A®(a). It can be shown that A~(a) contains subspaces which are 

not power series spaces, and in fact,  contain no power series subspaces, but we 

do not know of a simple example of a subspace of A~(a) which is not a power 

series space. 

Some of our initial results are analogous in statement and proof to those 

obtained in [3], and one result (Theorem 2) does not appear in [3], but its 

analogue is true. 

Definitions and terminology not explicitly explained here can be found in [1] 

or [3]. By subspace we shall mean a closed, infinite dimensional linear 

subspace. The symbol N will denote the sequence of positive integers, 

sometimes called the indices. We shall say that two positive sequences (a , )  and 

(/3,) are asymptotic and write ( a , ) -  (/3,) provided that the sequences (a, / /3,)  

and ( /3, /a ,)  are bounded above. In the nuclear power series space A~(a), we 

shall indicate by (11" Ilk) the fundamental sequence of seminorms given by 

II¢llk = s u p l ¢ , l k %  k = 1 ,2 . . . .  
i 

Analogously to [3], we introduce some auxiliary quantities based on the 

following parameters:  

a , / 3 - - n u c l e a r  exponent  sequences of infinite type; 

( y . ) - - a  basic sequence in A®(a) of the form: 

y, = 2tTe~, n = 1 , 2 , . . . ;  
i = l  

( d , ) - - a  sequence of non-zero scalars; 

~ r - - a  permutation of N. 

Then we define, for  n, k = ! , 2 , . . .  

qk = max{q:  k ° . l t ~ , l  = m a x k ' I t " l ;  
i 

k = ~ q k  . 

~,. = d .  i t . . '  - , 
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Y-- subspace of A~(a) generated by (y,). 

Using the same argument as in Lemma 3 of [3] we obtain the inequality, 

(I) - -  for all n, k. 
- -  / d , n  

We are then able to prove 

THEOREM 1. In the context of  the preceding notation, the following are 

equivalent. 

(i) Y is isomorphic to A~(/3); 

(ii) There exist (d,) and 7r such that for each k, lim,/z~ <oc and 
sup~ l im,/z,  k = ~; 

(iii) There exists 7r such that for each k, sup, yk <oo and 

supk iim, E~'~,(y,~/j) = oo. 

The proof of this theorem is based on inequality (I) and is very similar to the 

proof of Theorem 1 of [3]. The only significant change is that because of 

the different form of (1), we must here replace the use of the quantity 

log(q2 + 2] + 1)/(i2+ 2./)) by the use of the quantity log((] + 1)/j). This leads to 

the appearance of j in the denominator in condition (iii) above as opposed to 

the .i2 whiqh appears in the corresponding position in [3]. We may note here that 

the referee has pointed out that in [3], page 265, line 13, dN should be replaced 

by d~'. 

We also obtain the following result using an argument identical to the proof 

of Proposition 2 of [3]. 

COROLLARY 1. "If Y is isomorphic to A~(/3) and 7r is chosen so that condition 

(iii) of Theorem 1 holds, then there exists ko such that for k >_ ko we have 

l imTk,>0  and limqk =oo. 
n n 

The next result does not appear in [3], but the same argument leads to an 

analogous conclusion for infinite type power series 'subspaces of finite type 

power series spaces. 

THEOREM 2. I f  A®(/3) is isomorphic to a subspace of A~(t~) then there exists 

a non-decreasing unbounded sequence of indices (i.) such that ~ ~ (t~i.).. 

PROOF. The hypothesis means that there is a basic sequence (y.) in A®(o~) 

such that Y is isomorphic to A®(/3). We choose 7r according to (iii) of Theorem 
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1 and apply Corollary 1 to conclude that (o~q~o), - (/3~,~). Also by Corollary 1 

we can find a permutation or of N such that if i, =q ~%,  then (in) is 

non-decreasing and unbounded.  Thus it follows that the map (sc,)~,~ ( ~ )  

defines an isomorphism of A~(/3) onto A~((ai~)). The conclusion follows from 

elementary properties of power series spaces. 

REMARK. If we assume that A~(/3) is complemented in A~(a), then Theorem 

2 is a special case of Theorem 2.2 of [1]. Thus we obtain the same conclusion 

without assuming that our subspace is complemented,  but requiring instead 

that it is a power series space. 

Theorem 2 gives a necessary condition on/3  for A~(a) to have a subspace 

isomorphic to A~(/3). It is interesting to compare it with the condition obtained 

from considerations of diametric dimension. Applying the results of [1], 1.10 

we conclude easily that if A~(/3) is isomorphic to a subspace of A~(a), then 

sup, ( a , / / 3 , ) < ~ .  Again this condition is not comparable with ours. For  

example, if ~ = 22" and we set/3~ = at~/2j+~, then our condition holds but the 

diametric dimension condition does not. The reverse is true if we set /3, = 

(1/2)(a, + a~÷~). Both conditions hold if we set/3,  = a~,/2~÷2. The remainder of 

this paper is devoted to a closer analysis of special cases leading to the 

conclusion that if/3, -- a~,/2j+,_, then A~(/3) is not isomorphic to a subspace of 

A~(a). In particular, it will follow that neither of the two necessary conditions 

(nor their union) is sul~cient. 

PROPOSmON 1. Let F be a subspace of A~(ot) such that F is isomorphic to a 

power series space of infinite type and suppose that lim (a,~,/o~,) = oo. Then any 

basis [or F has a permutation (y~) for which there exists a non-decreasing 

unbounded sequence o[ indices (in) and ko such that 

Vk >-ko3nk ~q~ =i, [or n >=nk. 

PROOF. We begin with a basic sequence in A~(a) and since we are permitted 

one permutation we choose (y,)  so that Y is isomorphic to some A~(/3) for  

some /3 and ~r of Theorem 1 is the identity. 

Arguing exactly as in the proof of Theorem 2 we obtain (i,) and ko so that 

(ot,.~). ~ (/3~.~). =/3 for each k >_- ko. By the conclusion of Theorem 2 it follows 

that (a,~). ~ ( a , . )  for  each k =>ko and the hypothesis that l im(a.+~/a . )=oo 

implies that q k = i. for  n sufficiently large and this is the desired conclusion. 

It will be convenient  to introduce some notation in the context  of Proposition 

1. We take (v.) to be the strictly increasing sequence whose range is identical to 

that of (i.). Then we can take 0 = p o < p ,  < p 2 < " "  and write 
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i j=u ,  for  p , - , < j < - p . ,  n = l , 2 , - . .  

and 

q~ = i j = u ,  for  p._,<j<=p.,  n_~nk. 
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We will take /3. = ain and it follows that F is isomorphic to A~(/3). 

In the sequel, this notation will be referred to as the "context  of Proposi- 

tion I "  

PROPOSmON 2. In the context o[ Proposition i, there is an mo such that 

L >=n a n d p .  <=v. [or n >mo.  

PROOF. As we have seen. it follows from considerations of diametric 

dimension that since A~(/3) is isomorphic to a subspace of A~(a), then 

sup. (a./[3.) < ~. Hence sup. (a./a,.) < oo and since lim(a.+,/a. ) = oo it follows 

that n <_-i. for  n sufficiently large. In particular, for  n sufficiently large. 

p,<=ip.=v,. 

The following lemma is a variation of a result of Bourbaki,  [2] II §2, Lemme 

1. The proof is straightforward, one simply makes, for each d, the same 

construction as given by Bourbaki. 

LEMMA. Let F be a subspace o[ a locally convex space E and let ( V., )a~o be 

a fundamental system of absolutely convex open neighborhoods of 0 for F such 

that E has a fundamental system of neighborhoods o[ 0 indexed by D. Then 

there is a fundamental system of absolutely convex open neighborhoods o[ O, 

(Ud)~o for E such that 

Vd = U~ fq F, d E D. 

In the next result, we use a standard theorem on stability to replace our basic 

sequence (y,)  by an equivalent sequence having a special form. 

PROr~SITION 3. In the context of Proposition 1, we set 

~j ~ J  <] where ~ = tie, p , - ,  <=p, Yi = t,e,, ] = 1 , 2 , . - . .  
i = l  i = 1  

Then there exists ], such that (YJ)T=i,, is a basic sequence in A~(a) equivalent to 

(y~)T=J,. 

PROOF. Since a is a nuclear exponent  sequence of infinite type, we have 

C = sup(logn/a,)<oo.  Let  C, = e c. Also we have/~  such that E/~ -*. <o¢. 
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Since (y.)  is a basic sequence in A~(a) which generates a subspace Y 

isomorphic to A®(/3), it follows that there is a fundamental system of norms for 

Y such that (y.) is a basis in the completion of Y with respect to each of these 

norms. By the lemma, these norms can be extended to a fundamental system of 

norms (ll" II;,) for A~(a). Thus (y.)  is a basic sequence in each completion of 

A~(a) with respect to II" I[~,- Also, we have subsequences of indices (k.), (l~) 
such that k, -> ko and 

Ilxll    lrxll',   llxll  . . . .  x EA~(a) ,  /z : ! . 2 . . . . .  

Fix/x = 1,2,. • • and let /(  _-> (c,kk,.÷,/k,.). Choose no _-> nk., n~k.+,(where these 

quantities are obtained from Proposition I) such that 

a . .+ , -a . ._ ->a . ,  for n>=no. 

The last inequality is possible because l im( t~ .+ , / a . )=~  and (v.) is strictly 

increasing. Thus we have q k s = v. for  p._, < j  =<p. and n ->_ m so we can apply 

this for k = k~ and k =/(k.÷,  to obtain, 

Ily, llk=kT~.ltC.I for  p . _ , < j ~ p . ,  n>=no. 
Jlyjll..÷,---(/~k.÷,)~"ltL. I for p ._ ,<j~p . ,  n~n,,. 

The second statement along with the definition of the norm implies that 

(kk.÷,F'[t~[<(kk~÷,)%lt~.[ for  i > v . . p .  , < j = < p . ,  n>=no. 

Hence 

Ily,-p, llk~+,= sup(k~÷,)~'lt~l for  p._,<j<=p. 
i > t ' n  

-<-(kk~÷')~"lt~.l- for  p._,<j<p.,= 
k a Y .  +1 

n => no 

- -  / ~ + 1  n 

a - - a  k -.+, .. IlY, II,~ for  O . - , < J  < p . ,  

_-_ Yi k~ for p ._~<j=<p . ,  n->no.  

/1:>/1o 
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Therefore  we may compute 
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- t P a  

,=, Ily, IlL = ,° ,  Ily, I1~ . ° ,  J- , . - ,+,  [lyJ II~. 

2, - ( C , ¢ ) - . .  = ~ ~ / ? - ' ~ "  

_ - < C . ~ ,  1,. .--_. 
n = |  

Thus we may apply standard stability results ([5] Cor. 10.1 and Th. 3.1) to 

conclude that for each/~, there exists j .  such that (~)7=s. is a basic sequence in 

the completion of A. (a )  with respect to I1" [['*., equivalent to (yj)T-j~. Since each 

I1" n',. is a norm it follows immediately from standard arguments that (9~)7=~, is a 

basic sequence id A=(a) equivalent to (Y~)7=~,. 

Our next step is to derive an inequality involving 1,. and p.. 

PROPOSITION 4. In the context  o f  Proposit ion I, it fol lows that  for each 

k >-ko there is afc, Ck and fik such that  

k ~'~. <_ Ck£".  -''"- .... '+' (p.  -- p . - , ) ,  n >= h,. 

PROOF. Let  (~j) be as in Proposition 3 and let G be the subspace of A~(a) 

generated by (~j)~=j,. For each j -> j , ,  let A~: G ~ G be the projection deter- 

mined by the basis (y~)~_,, onto the one dimensional subspace generated by y~. 

Then from standard basis theory it follows that for each k there is /~ and (~k 

such that 

IlA,ylPk~Okllyl[~. y ~ .  J~j,. 

Choose n ->_ nk. nko and such that p._~ =>./, and consider the v. × (p. - p . _ , )  

matrix (tl) where 1 =<i-<v. and p . _ , < j  <-p.. We consider this matrix as 

defining a map from K "o p- ' to K ~- (K = the field of scalars). Since (2¢~)T=J, is a 

basic sequence, (y~)p. ,<j~,. is linearly independent so this matrix has rank 

p. - p . _ ,  and the range of the map is a p. - p .  , dimensional subspace H, of 

K v-. If Hz is the subspace of K ~- consisting of all vectors whose last 

p. - p . _ , -  i coordinates vanish then it follows from considerations of dimen- 

sion that H, N H2 contains a non-zero vector.  This means that there are scalars 

~, p.- t  < j -<-- p. not all zero such that 
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Pn 

~:jt{=0 for  v . - ( p . - p . _ , ) + l < i < = v . .  
j : p n - i + l  

Thus  we can write 

X = 

Pn ~'n --(Pn - P n  - I )+ 1 Pn 

j = P n - I + l  i ~ l  I = p n - I + l  

and so, fo r  an appropr ia te  choice  of  io, jo with l =< io =< v .  - (p.  - p . - , )  + 1 and 

p.-~ < jo--  p .  we have  

I p. 

j--p.-t+l 
}0 - -  / ~ a v  -(IPn -P~  - I )÷ I ~:it{o /~"o-----<]~jot,ol(p. p . - , )  - 

H o w e v e r ,  by Proposi t ion  1 since n = too, 

and so 

I t,ol = I '~°-,o ,~o!'%<= .~."° I k~." 

II x II~ ~ {~ot~.J(p. - p . - , )  kg ~./~%-"-- .... '÷' 

On the o ther  hand,  since n = m we have  f rom Proposi t ion  1, 

(Ia,ox --I~,ol Ily,oll  --1¢,ol 
H e n c e  we have,  

n __->Ilk 

where  hk is chosen  so that  n -> fik implies n = m, nko and p._, => j,. Finally,  the 

desi red conc lus ion  is obta ined by applying the ent ire  a rguments  to k ko. 

This  comple tes  the prel iminary computa t ions  and we are ready  to obtain our  

results  fo r  the special  case,  l im(a.+,/a.)= ~. 

THEOREM 3. I f  iim(a.+Ja.) : oo, then a subspace of A~(a) is isomorphic to 

a power series space if and only if it is isomorphic to the subspace of A~(a) 

generated by a subsequence of the basis (e,). 
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PROOF. One way is obvious so we may assume that we have a subspace  of 

A®(a) which is isomorphic to a power  series space. In view of Zahar ju ta ' s  

result [6] on the impossibili ty of embedding finite type power  series spaces in 

infinite type power  series spaces,  we may assume that the subspace  is of infinite 

type. 

Thus we return to the context  of Proposit ion 1 and assume that we have an 

infinite set No of indices such that p. - p . _ ,  _-> 2 for n E No. Applying Proposi- 

tions 2 and 4 with k = ko we have/~, C and ti such that 

k~-. =< C ~ f %  -"--~- 1)+! ~ Cvk  "~"-! for  n -->- h, n E No. 

This implies that we have C, > 0 and an infinite set of indices N, such that 

k'~" <-C~nk ~"-', n EN~ 

so that, since a is a nuclear exponent  sequence of infinite type,  we have 

a .  { log C, log n log/~ ] sup --<_ sup + + < oo 
.~N,a . - I  .EN, \ a .  i logko a . - t l o g k o  logko} 

which is a contradiction. Thus p. - p , - ,  = I for  n sufficiently large. This means 

that (i,) is strictly increasing for  n -> no. Hence  we have, for n = no, 

"" = = [ t , . l k %  for  n>=m II Y- tl* = I t . .  I k "~ " 

which implies that the map y, , ,*~ tT.e~., n => no defines an isomorphism of the 

space generated by (Y,),~.o onto the space generated by the subsequence 

(e~.),__-,o. Finally we observ~ that by Proposit ion 2, if we originally chose no > m o  

then i, -_ n >- no for  n = no. This implies that the space generated by (y,)7_, is 

isomorphic to the space generated by the subsequence (e,, -.., e~_j, e%, 

e,.o+,,... ) and we are finished. 

REMARK. Theorem 3 proves  the s ta tement  made af ter  Theorem 2 above  

because,  as pointed out by Bessaga ([l], p. 318) if a ,  = 2:" (which satisfies the 

hypothesis  of Theorem 3) and/3.  = at,m+2, then A=(/3) is not isomorphic to the 

subspace  of A=(a) generated by any subsequence of (e,) so by Theorem 3 it is 

not isomorphic to any subspace  of A=(c~). 
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Theorem 3 also holds if the hypothesis, limn (a,+,/ao) = ~, is replaced by the 

very different condition, sup, (a2n ~an ) < ~. To see this, we first apply Theorem 

2 and then the same argument used by Bessaga [1] in proving Corollary 3.3. 

We conclude by relating some of our results to Bessaga's conjecture. 

COROLLARY 2. Bessaga's conjecture holds [or A~(a) if lim. (ao+,/t~.)= ~. 

PROOF. If F is a complemented subspace of A~(a) and has a basis, then we 

can apply Theorem 2.2 of [1] to conclude that F is isomorphic to a power series 

space. The conclusion then follows from Theorem 3. 

Finally we point out that it is obvious Theorem 3 and the fact that in a nuclear 

space any subspace generated by a subsequence of a basis is complemented, 

that i[ limn(a~÷~/a,)=~ or sup , (a2 , /~n)<~  then a subspace o[ As(a) is 
isomorphic to a power series space if and only if it is isomorphic to a 
complemented subspace. It might be interesting to investigate how general this 

phenomenon is. 
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