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INFINITE TYPE POWER SERIES SUBSPACES
OF INFINITE TYPE POWER SERIES SPACES’

BY
ED DUBINSKY

ABSTRACT

We consider the problem of finding all power series subspaces of a given
infinite type power series space. A necessary condition is obtained which is
similar to a property of complemented subspaces of nuclear Fréchet spaces. In
some cases, a complete solution is obtained and this leads to new information
on a conjecture of C. Bessaga.

This paper is a continuation of the investigations begun in [3]. The main
problem which we consider here is to find, for a given nuclear exponent
sequence « of infinite type, necessary and sufficient conditions on 8 so that
A.(B) is isomorphic to a subspace of A.(a). In view of a well-known result of
V. P. Zaharjuta [6], this is the same as finding all power series subspaces of
A.(a). Theorem 1 is a technical characterization of such 8 which is useful but
is not completely satisfactory. Theorem 2 gives a necessary condition on 8 to
the effect that, up to isomorphism, 8 must be obtainable from the sequence «
by deleting some terms and repeating others finitely many times. This is similar
to a property of complemented subspaces of nuclear Fréchet spaces (see [1],
Theorem 2.2). It is shown that the condition of Theorem 2, even when
strengthened by the additional requirement (easily established as necessary
from considerations of diametric dimension) that sup,(a./8.)<=, is not
sufficient. On the other hand, it is shown in Theorem 3 that if lim, (@, «/a,) =
or sup.(aa./a.)<® then the necessary condition of Theorem 2 can be
strengthened so as to exclude repetitions and it is then sufficient. This permits
us to establish the following conjecture of C. Bessaga [1] for the case
X = A-(a) and a satisfies either of the above two conditions: if X is a nuclear
Fréchet space with a basis (x,) then Y is isomorphic to a complemented
subspace of X and has a basis if and only if Y is isomorphic to the subspace
generated by a subsequence of (x,). Up until now this conjecture was known to
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hold for all power series spaces of finite type [4] and those power series spaces
of infinite type which are isomorphic to their square (that is, sup, (a2, /a,) < ).

We do not know if Theorem 3 holds for all . All of our considerations
involve infinite type power series subspaces of an infinite type power series
space A.(a). In view of Zaharjuta’s result, this includes all power series
subspaces of A.(a). It can be shown that A.(a) contains subspaces which are
not power series spaces, and in fact, contain no power series subspaces, but we
do not know of a simple example of a subspace of A.(«) which is not a power
series space.

Some of our initial results are analogous in statement and proof to those
obtained in [3], and one result (Theorem 2) does not appear in [3], but its
analogue is true.

Definitions and terminology not explicitly explained here can be found in [1]
or [3]. By subspace we shall mean a closed, infinite dimensional linear
subspace. The symbol N will denote the sequence of positive integers,
sometimes called the indices. We shall say that two positive sequences (a, ) and
(B.) are asymptotic and write (a, )~ (B8.) provided that the sequences (a./B.)
and (B./a.) are bounded above. In the nuclear power series space A.(a), we
shall indicate by (|| «) the fundamental sequence of seminorms given by

I€lk = sup|&[k=,  k=12-"

Analogously to [3], we introduce some auxiliary quantities based on the
following parameters:

a, B —nuclear exponent sequences of infinite type;

(y.)—a basic sequence in A.{(a) of the form:

yﬂzit'i‘ei’ n=1,2,"‘;
i=t

(d.)—a sequence of non-zero scalars;
7 —a permutation of N.
Then we define, for n, k = 1,2, --

g = max{g: k*[t;]= max k=|t7];
kK _ap |

‘Y" B'rr(n)’

[.Lz = d:‘/Bw(m t;””pw(n)k“’::;
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Y = subspace of A.(a) generated by (y.).
Using the same argument as in Lemma 3 of [3] we obtain the inequality,

\Yh k+1 bt
) (k:') é“u"k §(kzl)y for all n, k.

We are then able to prove

THEOREM 1. In the context of the preceding notation, the following are
equivalent.

(i) Y is isomorphic to A(B);

(i) There exist (d,) and m such that for each k, m"“: <= and
sup lim, pn = ;

(i) There exists w such that for each k, sup,y:<® and
supy lim, Zi-i(yi/j) = .
The proof of this theorem is based on inequality (1) and is very similar to the
proof of Theorem 1 of [3). The only significant change is that because of
the different form of (1), we must here replace the use of the quantity
log((j*+2j + D/(j*+2j)) by the use of the quantity log((j + !)/j). This leads to
the appearance of j in the denominator in condition (iii) above as opposed to
the j* which appears in the corresponding position in [3]. We may note here that
the referee has pointed out that in [3], page 265, line 13, d. should be replaced
by d;'.

We also obtain the following result using an argument identical to the proof
of Proposition 2 of [3].

CoroLLARY 1. -If Yisisomorphic to AB) and = is chosen so that condition
(i) of Theorem 1 holds, then there exists ko, such that for k = k, we have

limys>0 and limqk =,

The next result does not appear in [3], but the same argument leads to an
analogous conclusion for infinite type power series subspaces of finite type
power series spaces.

THeOREM 2. If A(B) is isomorphic to a subspace of A-(a) then there exists
a non-decreasing unbounded sequence of indices (i) such that g ~(a;,),.

Proor. The hypothesis means that there is a basic sequence (y,) in A.(a)
such that Y is isomorphic to A.(8). We choose 7 according to (iii) of Theorem
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1 and apply Corollary 1 to conclude that (agx0), ~ (B.). Also by Corollary 1
we can find a permutation ¢ of N such that if i, =qk., then (i,) is
non-decreasing and unbounded. Thus it follows that the map (&, )w— (&.00)
defines an isomorphism of A.(8) onto A.((a;,)). The conclusion follows from
elementary properties of power series spaces.

ReMARK. If we assume that A.(B) is complemented in A.(« ), then Theorem
2 is a special case of Theorem 2.2 of [1]. Thus we obtain the same conclusion
without assuming that our subspace is complemented, but requiring instead
that it is a power series space.

Theorem 2 gives a necessary condition on 8 for A.(a) to have a subspace
isomorphic to A.(B). It is interesting to compare it with the condition obtained
from considerations of diametric dimension. Applying the results of [1], 1.10
we conclude easily that if A.(8) is isomorphic to a subspace of A.(a), then
sup, (a./B.) <. Again this condition is not comparable with ours. For
example, if @, =2* and we set B. = a(u/2+1, then our condition holds but the
diametric dimension condition does not. The reverse is true if we set B, =
(1/2)(a. + a.+1). Both conditions hold if we set 8, = ajnj21+2. The remainder of
this paper is devoted to a closer analysis of special cases leading to the
conclusion that if 8, = a.2+2, then A.(B) is not isomorphic to a subspace of
A.(a). In particular, it will follow that neither of the two necessary conditions
(nor their union) is sufficient.

ProrosiTioN 1. Let F be a subspace of A-(a) such that F is isomorphic to a
power series space of infinite type and suppose that lim (a,.,/a,) = . Then any
basis for F has a permutation (y.) for which there exists a non-decreasing
unbounded sequence of indices (i,) and ko such that

Vkz ko3 Dqk =i, for n=Zn..

Proor. We begin with a basic sequence in A.(a) and since we are permitted
one permutation we choose (y.) so that Y is isomorphic to some A.(B) for
some B and w of Theorem 1 is the identity.

Arguing exactly as in the proof of Theorem 2 we obtain (i,) and k, so that
(@a)n ~ (Brw)n = B for each k = k. By the conclusion of Theorem 2 it follows
that (ag«), ~(a;,) for each k = k, and the hypothesis that lim(a..,/a,) =
implies that g = i, for n sufficiently large and this is the desired conclusion.

It will be convenient to introduce some notation in the context of Proposition

1. We take (v.) to be the strictly increasing sequence whose range is identical to
that of (i.). Then we can take 0= po<p,<p,<--- and write
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ii=v. for p..,<j=pn n=12--:
and

qi=i=v, for p,.,<j=p., nzn.

We will take B, = a;, and it follows that F is isomorphic to A.(B).

In the sequel, this notation will be referred to as the ‘“‘context of Proposi-
tion 1 .

ProposiTiON 2. In the context of Proposition 1, there is an m, such that
in Zn and p, = v, for n > m,.

Proor. As we have seen, it follows from considerations of diametric
dimension that since A.(B) is isomorphic to a subspace of A.(«a), then
sup, (a./B.) <. Hence sup, (a./a.,,) <o and since lim(a./a.) = it follows
that n =i, for n sufficiently large. In particular, for n sufficiently large,

Do =y, = Va.

The following lemma is a variation of a result of Bourbaki, [2] IT §2, Lemme
1. The proof is straightforward, one simply makes, for each d, the same
construction as given by Bourbaki.

LeMMmA. Let F be a subspace of a locally convex space E and let (V,)acp be
a fundamental system of absolutely convex open neighborhoods of 0 for F such
that E has a fundamental system of neighborhoods of 0 indexed by D. Then
there is a fundamental system of absolutely convex open neighborhoods of 0,
(Us)aen for E such that

deUan, d eD.

In the next result, we use a standard theorem on stability to replace our basic
sequence (y.) by an equivalent sequence having a special form.

ProrosiTioN 3. In the context of Proposition 1, we set

§i = D tie, pai<j=p. where y = tie, j=12, -
i=1 i=1

Then there exists j, such that (¥;);-;,, is a basic sequence in A.(a) equivalent to
(¥i)i=is.

Proor. Since a is a nuclear exponent sequence of infinite type, we have
C = sup(logn/a,)<x. Let C,=¢€. Also we have k such that Tk " <o,
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Since (y,) is a basic sequence in A.(a) which generates a subspace Y
isomorphic to A.(B), it follows that there is a fundamental system of norms for
Y such that (y.) is a basis in the completion of Y with respect to each of these
norms. By the lemma, these norms can be extended to a fundamental system of
norms (|| |[i) for A.(a). Thus (y.) is a basic sequence in each completion of
A(a) with respect to [ [i. Also, we have subsequences of indices (k, ), (I.)
such that k, = k, and

Itk =llxlli = x e x € Asla), o =1,2,---.

Fix u =1,2,--- and let k = (¢,kk,../k,.). Choose no = ., ngx,. (Where these
quantities are obtained from Proposition 1) such that

a,—a, Za, for n=n,.
The last inequality is possible because lim(a,../a,) = and (v,) is strictly

increasing. Thus we have g% = v, for p,_,<j =p,. and n = n, so we can apply
this for k =k, and k = kk,., to obtain,

1¥illo. = kin|th,| for pa<j=p., nzn,
“ Yi "Ek“+l = (k kuﬂ) o Ith for Dn—1 <] = Dn, N 2 No.

The second statement along with the definition of the norm implies that

(ko [ 61| < (Rkuw)™a| L] fOr 0> v pai<j=pa  nZho
Hence
1% = il = sup (ku)®[£i] for pa-i<j=pn
l‘(-k + a,,n j
g(,;:,')l tn| for puna<j=p. nzn

. S </_<u_+:> e
k a"n+l_au" k“

“(ex)

Yille.  for P <j=pa, NZn

lyill, for p.i<j=p., nzn,.

A
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Therefore we may compute

i ly; — ¥ Mé i 1y = ¥l
=T 1 =y [ ES R ||k..

il
Ms
™M

[

<

==

+

Thus we may apply standard stability results ([S] Cor. 10.1 and Th. 3.1) to
conclude that for each u, there exists j. such that (§);-;, is a basic sequence in
the completion of A.(a) with respect to || - ||\,, equivalent to (y;);-,,. Since each
[i-1i. is a norm it follows immediately from standard arguments that (%,);-;, is a
basic sequence il A.(a) equivalent to (y;)j-;,.

Our next step is to derive an inequality involving v, and p..

ProrosiTioN 4. In the context of Proposition 1, it follows that for each
k = ko there is a k, Ci and A, such that

ko< Cklg'-'.,;“’n‘”n—l"' (p" — pn_,), n Z f.

Proor. Let (¥;) be as in Proposition 3 and let G be the subspace of A.(a)
generated by (¥;);<;,. For each j =, let A;: G - G be the projection deter-
mined by the basis (#;);-,, onto the one dimensional subspace generated by y;.
Then from standard basis theory it follows that for each k there is kK and C.
such that

1Al = Celly

&y }’EG, jéjl-

Choose n = n,, n,, and such that p._,=j, and consider the v, X (p, — p.-1)
matrix (¢!) where 1=i=wv, and p._,<j =p. We consider this matrix as
defining a map from K? "1 to K" (K = the field of scalars). Since (§;);-;, is a
basic sequence, (¥)p. ,<i=e. 1s linearly independent so this matrix has rank
Pn — Pn-: and the range of the map is a p. — p.-, dimensional subspace H, of
K™ 1f H, is the subspace of K™ consisting of all vectors whose last
P~ — p.-— 1 coordinates vanish then it follows from considerations of dimen-
sion that H, N H, contains a non-zero vector. This means that there are scalars
&, Dno1<j = p. not all zero such that
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Py
> &ti=0 for v.—(pn—pa-)+1<i=w,.

j=pn-1+1

Thus we can write

Pn YaB,mPa ¥l P,
x= > &= Y S &tle €G,
i=pn-1+1 i=1 1=pp-1+1

and so, for an appropriate choice of iy, jo with 1 =i, =v, —(p. — p.-1) + 1 and
Prn-1<jo=p. we have

Pn
Ixle=| 3 | £ 6111 n = pup et

i=pn-1+

However, by Proposition 1 since n = ny,

[tis]=|ts|k§o=]tl

ko
and so

llx fle = &ot s

(pn - pn—l) ks v'lk-a"n_(p"_p"")ﬂ

On the other hand, since n = n. we have from Proposition 1,

I Aiox lhe = &l 1l Tll = 1 &l 123

ke

Hence we have,
k Fon = -
(E) = Cu(Pr — Dn—1) k @ @000, nZn

where 7, is chosen so that n = A, implies n = n,, ny, and p._, 2 j,. Finally, the
desired conclusion is obtained by applying the entire arguments to kko.

This completes the preliminary computations and we are ready to obtain our
results for the special case, lim(an..\/a.) = .

THeoreM 3. If lim(a..+./a.) = o, then a subspace of A.(a) is isomorphic to
a power series space if and only if it is isomorphic to the subspace of A.(a)
generated by a subsequence of the basis (e;).
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Proor. One way is obvious so we may assume that we have a subspace of
A.(a) which is isomorphic to a power series space. In view of Zaharjuta’s
result {6] on the impossibility of embedding finite type power series spaces in
infinite type power series spaces, we may assume that the subspace is of infinite
type.

Thus we return to the context of Proposition | and assume that we have an
infinite set N, of indices such that p, — p.- =2 for n € N,. Applying Proposi-
tions 2 and 4 with k = ko we have k, C and # such that

k§n=C, koot < C, k™t for n Z A, n € N,.
This implies that we have C,>0 and an infinite set of indices N, such that
k3"§C|nIga"_’, nEN|

so that, since a is a nuclear exponent sequence of infinite type, we have

@ _ ( log C, log n logE)
SUP s = SUP G logke | anilogke | logke) =%

which is a contradiction. Thus p, — p.-, = 1 for n sufficiently large. This means
that (i,) is strictly increasing for n = n,. Hence we have, for n = n,,

lyalle =|tox|k=at =|t7, |k for nz=n

which implies that the map y, ~— t% €., n = n, defines an isomorphism of the
space generated by (y.).zn, Onto the space generated by the subsequence
(€., )n=n,- Finally we observé that by Proposition 2, if we originally chose no > m,
then i, = n = n, for n = n,. This implies that the space generated by (y.):-: is
isomorphic to the space generated by the subsequence (e, -, en-1, €,
€i,.»--+) and we are finished.

Remarx. Theorem 3 proves the statement made after Theorem 2 above
because, as pointed out by Bessaga ([1], p. 318) if a, =2% (which satisfies the
hypothesis of Theorem 3) and B, = @212, then A(B) is not isomorphic to the
subspace of A.(«) generated by any subsequence of (e, ) so by Theorem 3 it is
not isomorphic to any subspace of A.(a).
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Theorem 3 also holds if the hypothesis, lim, (a...,/a.) = ®, is replaced by the
very different condition, sup, («2./a.) <. To see this, we first apply Theorem
2 and then the same argument used by Bessaga [1] in proving Corollary 3.3.

We conclude by relating some of our results to Bessaga’s conjecture.

COROLLARY 2. Bessaga’s conjecture holds for A(a) if lim, (a../a,) = .

Proor. If F is a complemented subspace of A.(a) and has a basis, then we
can apply Theorem 2.2 of {1] to conclude that F is isomorphic to a power series
space. The conclusion then follows from Theorem 3.

Finally we point out that it is obvious Theorem 3 and the fact that in a nuclear
space any subspace generated by a subsequence of a basis is complemented,
that if lim, (a.«/a,) =% or sup,(a/a.)<® then a subspace of A.(a) is
isomorphic to a power series space if and only if it is isomorphic to a
complemented subspace. It might be interesting to investigate how general this
phenomenon is.
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